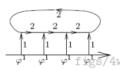
3.6.3. Example: The 2 Dimensional Non-Abelian Lie Algebra. Let $\mathfrak g$ be the Lie algebra with two generators $x_{1,2}$ satisfying $[x_1,x_2]=x_2$, so that the only non-vanishing structure constants b_{ij}^k of $\mathfrak g$ are $b_{12}^2=-b_{21}^2=1$. Let $\varphi^i\in\mathfrak g^*$ be the dual basis of x_i ; by an easy calculation, we find that in $I\mathfrak g$ the element φ^1 is central, while $[x_1,\varphi^2]=-\varphi^2$ and $[x_2,\varphi^2]=\varphi^1$. We calculate $\mathcal T^w_{\mathfrak g}(D_L)$, $\mathcal T^w_{\mathfrak g}(D_R)$ and $\mathcal T^w_{\mathfrak g}(w_k)$ using the "in basis" technique of Equation (18). The outputs of these calculations lie in $\mathcal U(I\mathfrak g)$; we display these results in a PBW basis in which the elements of $\mathfrak g^*$ precede the elements of $\mathfrak g$:

$$\mathcal{T}_{\mathfrak{g}}^{w}(D_{L}) = x_{1}\varphi^{1} + x_{2}\varphi^{2} = \varphi^{1}x_{1} + \varphi^{2}x_{2} + [x_{2}, \varphi^{2}] = \varphi^{1}x_{1} + \varphi^{2}x_{2} + \varphi_{1},
\mathcal{T}_{\mathfrak{g}}^{w}(D_{R}) = \varphi^{1}x_{1} + \varphi^{2}x_{2},
\mathcal{T}_{\mathfrak{g}}^{w}(w_{k}) = (\varphi^{1})^{k}.$$
(19)

For the last assertion above, note that all non-vanishing structure constants b_{ij}^k in our case have k=2, and therefore all indices corresponding to edges that exit an internal vertex must be set equal to 2. This forces the "hub" of w_k to be marked 2 and therefore the legs to be marked 1, and therefore w_k is mapped to $(\varphi^1)^k$.



[b, ->]	$\times_{l}^{n_{l}}$	$\chi_{\lambda}^{\eta_{\lambda}}$	Y, P,	Yaz
χ_I	0	$n_2 \mathcal{X}_2^{n_2}$	\bigcirc	-P2 /2 /2
ي کرړ	X27=6(7) Xi	0	0	By, 12/2-1
Y,		0	0	0
Yz	1 2 (1) Xi	-24, 4º2-1		

$$e^{XX_{1}} \times_{2} e^{-XX_{1}} = e^{XadX_{1}} \times_{2} = e^{X} \times_{2}$$

$$\Rightarrow e^{XX_{1}} \times_{2} = e^{X} \times_{2} e^{XX_{1}} = X_{2} e^{XX_{1}} + (e^{X} - 1) \times_{2} e^{XX_{1}}$$

$$\Rightarrow [x_{2}, e^{XX_{1}}] = (1 - e^{X}) \times_{2} e^{XX_{1}} \qquad (of_{cowse}, [x_{2}, e^{XX_{2}}] = 0)$$

$$\Rightarrow [x_{2}, x_{1}^{n}] = x_{2} (x_{1}^{n} - \sum_{j=0}^{n} {n \choose j} \times_{j}^{j}) = -x_{2} \sum_{j=0}^{n-1} {n \choose j} \times_{j}^{j}$$

~=0-1

On to the Alexander polynomial -

