Can do with tubes and strings

May 04-10

8:55 AM

Allowed moves:
1. \(\leftrightarrow \) (an isomorphism).
2. All crossings: \(\times \times \times \times = \times \times \).
3. Vertices:
 - "hard"
 - "trivial"
 - "smooth"

4. Likely fails

5. String delete

6. Likely forbidden. The price \(\Delta \) is too high, and if allowed, \(\Psi \) would be too.

Goal

Come to \(\Psi \) from a tube-only shape. Presumably \(\Delta \) will fail, but \(\Psi \) will do.

Attempt 1

\[\begin{array}{c}
\Delta \\
\downarrow \\
\triangleleft \rightarrow \bigcirc \\
\downarrow \\
\Delta \\
\end{array} \]

\[\begin{array}{c}
\bigcirc \\
\downarrow \\
\bigcirc \\
\downarrow \\
\Psi \end{array} \]
Attempt 2

\[\ \varnothing \rightarrow \ \Psi \]

Question: If an operation is doable, in what sense does its price tag?

Attempt 3

\[\ \Psi \rightarrow \ \Psi \rightarrow \ \Psi \]

Question: What's \(A(\Psi) \) (less than \(A(\Psi) \) for sure)

Attempt 4

Aside:

is a \(K_{3,3} \)

Does this give the right output?

\[\ \Theta \rightarrow \ \Theta \rightarrow \ \Theta \rightarrow \ \Theta \]

compare with \[\ \cdot \]
Why not $\triangle \subseteq \circ$ \\
Why not $\circ \subseteq \circ$