For a set
$$A \subseteq W$$
, let $i_A: W \rightarrow W$ be
 $i_A(n) = |A \cap [1, n]|$ (so for $n \in A$, $i_A(n)$
is the serial number of
 n in A)
and let $f_A(n) := N + i_A(n)$.
Quistion Assume A is an $R.E.$ stl. Is
 $B = F_A(A)$ also RE_2°
i.e., to each almost of A
 add its index within A .
Strategy A B is not RE . Assume H is and use IH to
Show that A is necesive.
Let \prec be a machine that outputs A and assume B
is a makine that outputs B .
Goal 1 Certify with a certainty of induction: $a \rightarrow n$
stopping [enited] that some output n of \prec , or $D+I$
 $\not{\subset} \beta$, is the smallest that will our be produced by
its respective machine.
 $- IF \beta \rightarrow 2$, done
If $\beta \rightarrow 3$, wit for $\prec \rightarrow 1$ or $\cancel{2} \rightarrow 2$; one of the two
must happen and in either case we are done:
 $\alpha \rightarrow 2 \Rightarrow [X \rightarrow 1 \Rightarrow 24 + B, 3 + B, \Rightarrow \approx [So \leftrightarrow 12 + B, 3 + B, 3 + B, \Rightarrow \approx [So \leftrightarrow 12 + B, 3 + B, 3 + B, \Rightarrow \approx [So \leftrightarrow 12 + B, 3 + B, 3 + B, \Rightarrow \approx [So \leftrightarrow 12 + B, 3 + B, 3 + B, \Rightarrow \otimes [So \leftrightarrow 12 + B, 3 + B, 3 + B, \Rightarrow \otimes [So \leftrightarrow 12 + B, 3 + B, 3 + B, \Rightarrow \otimes [So \leftrightarrow 12 + B, 3 + B, 3 + B, \Rightarrow \otimes [So \leftrightarrow 12 + B, 3 + B, 3 + B, \Rightarrow \otimes [So \leftrightarrow 12 + B, 3 + B, 3 + B, \Rightarrow \otimes [So \leftrightarrow 12 + B, 3 + B, 3 + B, \Rightarrow \otimes [So \leftrightarrow 12 + B, 3 + B, 3 + B, \Rightarrow \otimes [So \leftrightarrow 12 + B, 3 + B, 3 + B, \Rightarrow \otimes [So \leftrightarrow 12 + B, 3 + B, 3 + B, \Rightarrow \otimes [So \leftrightarrow 12 + B, 3 + B$

$$\begin{aligned} \text{If } \beta \rightarrow 4, \text{ Wait for } \swarrow \rightarrow 1, 2, \text{ or } 3. \\ \swarrow \rightarrow 1 \text{ or } 2 \implies \beta \rightarrow 4 \quad \text{isn't minimul.} \\ \swarrow \rightarrow 3 \implies A^{n}[i_{1}3] = e^{3} \text{ or } e^{1} \text{ or } e^{2} \text{ or } e^{1} \text{ or } e^{$$

Goal 2 Will L->1 Lo stratugy B B is RE.

Itai's Solution:

Question: For a subset B of N (the naturals), write B={b_1<b_2<b_3<...} and let TB={k+b_k}. If B is RE, is it always true that TB is RE?

Answer: No. Let A be the set of n's such that Turing machine number n halts, and let B={2^n: n\in A}. Then B is clearly RE, but TB is not. Indeed, elements of TB are of the form 2^{n+k}, where 0<=k<=n, so k is much smaller than 2ⁿ. Thus if you get an element of TB you can immediately find its n and k. But k is the number of machines before n that stop. If you know that number it is easy to find out which are the machines that stop - you simply run all n machines in parallel until exactly k of them stop, and you now know that the rest will never stop. So if you have a machine that can produce arbitrarily large elements of TB then you can solve the halting problem; so TB is not RE.