

$$
\begin{aligned}
& u(g) \\
& \stackrel{2}{v} / \pi \\
& u\left(g_{+}\right) \rightleftarrows M_{+}:=u(g) \cdot I_{+}
\end{aligned}
$$

Note: In the w case,

$$
g_{+} \otimes y_{-} \xrightarrow{g_{-} \rightarrow 0} g_{+}
$$

is a Lie alg. map, but $g_{+} \oplus g_{-} \xrightarrow{g_{+} \rightarrow 0} g_{-}$ is nt.

In a general bi-algebra, there's only one way to $\operatorname{map} u(y) \rightarrow u\left(g_{+}\right)$or $u(g) \rightarrow u\left(y_{-}\right)$, and this is via $M_{+} \& M_{-} \quad[i . e$, using PBW Followed by a projection]. The "other" map $u(y) \rightarrow u\left(y_{+}\right)$that exists in the w-cagl is a coincidence.

Question. Is it possible to repeat the EK argument in the w case, with $\mathrm{U}(\mathrm{g}+$) replacing $\mathrm{M}+$?

$$
\Rightarrow \Phi\left((\otimes \Delta) J \cdot J^{23}=(\Delta \otimes)\right) J \cdot J^{12}
$$

