An even periodic cohomology theory is a multiplicative cohomology theory with
\[E^n(*_0) = \begin{cases} B^k E^0(*) & n = 2k \\ 0 & n \text{ is odd} \end{cases} \]
with \(B \in E^2(*) \) invertible.

Atiyah-Hirzebruch Spectral Sequence:
\[H^q(X, E^q(*)) \Rightarrow E^{eq}(X) \]

If \(E \) is even periodic,
\[E(C^{\infty}) = E(*)[[t, \bar{t}]] \]

The power series \(f(x, y) = x + y + xy \) satisfies
\[f(xy) = f(yx) \quad f(f(x, y), z) = f(f(x, y), z) \quad f(x_0) = x \]
This is "the formal multiplicative group"