The Core E-K Argument, Following Haviv

February-14-10 10:48 AM

5.1.5. The maps $i_{\pm}: \mathcal{M}_{\pm} \to \mathcal{M}_{\pm} \boxtimes \mathcal{M}_{\pm}$. Two more $\vec{\mathcal{A}}$ -maps we will use below are the maps $i_{\pm}: \mathcal{M}_{\pm} \to \mathcal{M}_{\pm} \boxtimes \mathcal{M}_{\pm}$. The map i_{+} is defined as follows:

$$i_+(p_+(D)) = (p_+ \boxtimes p_+)(\Delta(D)), \quad D \in \vec{\mathcal{A}}.$$

It is immediate to check that i_{+} is well-defined and is an $\vec{\mathcal{A}}$ -map, namely

$$i_{+}(DE) = \Delta(D)i_{+}(E),$$

for all $D \in \mathcal{A}, E \in \mathcal{M}_+$. Similar definition and properties are shared by the map i_- .

5.2. The diagrammatic Etingof-Kazhdan twist. Following [EK1], we construct an element $J \in \vec{\mathcal{A}}^{\boxtimes 2}$ as follows. Put

$$\widetilde{J} = \mathbf{Z}_{K}(|\mathbf{x}|) \in \mathcal{A}^{\boxtimes 4}$$
,

and use the same symbol to denote $\iota(\widetilde{J}) \in \overrightarrow{\mathcal{A}}^{\boxtimes 4}$. Set

$$J = (\phi^{-1} \boxtimes \phi^{-1})(p_+ \boxtimes p_- \boxtimes p_+ \boxtimes p_-)(\widetilde{J}) \in \overrightarrow{\mathcal{A}}^{\boxtimes 2}.$$

By expressing the parenthesized braid in the formula for \widetilde{J} as the composition of generating associativity and braiding morphisms, and recalling (4.33), we see that

and it is then easy to check that

$$J = \uparrow \uparrow + \frac{1}{2} \uparrow \uparrow \uparrow + \text{ terms of degree } > 1.$$
 (5.7)

Theorem 7. Twisting \vec{A}_{KZ} by $F = J^{-1}$ yields a quasitriangular Hopf structure on \vec{A} , denoted \vec{A}_{EK} , whose R-matrix is a quantization of the diagrammatic r-matrix:

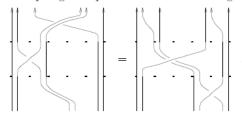
$$R_{EK} = \uparrow \uparrow + \uparrow \leftarrow \uparrow + terms \ of \ degree > 1.$$
 (5.8)

Proof. By the transformation formula (4.26) of the associator under twisting, we have to show that

$$\Phi \cdot (\Delta \boxtimes \mathrm{id})(J) \cdot J^{12} = (\mathrm{id} \boxtimes \Delta)(J) \cdot J^{23}, \tag{5.9}$$

in order to prove that \vec{A}_{EK} is Hopf (that is, its coproduct is coassociative).

Our starting point is the topological equivalence of the following two parenthesized braids:



Applying \mathbf{Z}_{K} to both sides, using Definition 4.35 and the definition of \widetilde{J} , we find that

$$\Delta^{\boxtimes 3}(\Phi) \cdot (\widetilde{J} \boxtimes 1^{\boxtimes 2}) \cdot ((\Delta^{\boxtimes 2} \boxtimes \operatorname{id}^{\boxtimes 2})(\widetilde{J}))^{(23)} = (1^{\boxtimes 2} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 2} \boxtimes \Delta^{\boxtimes 2})(\widetilde{J}))^{(45)} \cdot (\Phi^{135} \boxtimes \Phi^{246}) = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 2} \boxtimes \Delta^{\boxtimes 2})(\widetilde{J}))^{(45)} \cdot (\Phi^{135} \boxtimes \Phi^{246}) = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 2} \boxtimes \Delta^{\boxtimes 2})(\widetilde{J}))^{(45)} \cdot (\Phi^{135} \boxtimes \Phi^{246}) = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 2} \boxtimes \Delta^{\boxtimes 2})(\widetilde{J}))^{(45)} \cdot (\Phi^{135} \boxtimes \Phi^{246}) = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 2} \boxtimes \Delta^{\boxtimes 2})(\widetilde{J}))^{(45)} \cdot (\Phi^{135} \boxtimes \Phi^{246}) = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 2} \boxtimes \Delta^{\boxtimes 2})(\widetilde{J}))^{(45)} \cdot (\Phi^{135} \boxtimes \Phi^{246}) = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 2} \boxtimes \Delta^{\boxtimes 2})(\widetilde{J}))^{(45)} \cdot (\Phi^{135} \boxtimes \Phi^{246}) = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 2} \boxtimes \Delta^{\boxtimes 2})(\widetilde{J}))^{(45)} \cdot (\Phi^{135} \boxtimes \Phi^{246}) = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 2} \boxtimes \Delta^{\boxtimes 2})(\widetilde{J}))^{(45)} \cdot (\Phi^{135} \boxtimes \Phi^{246}) = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 2} \boxtimes \Delta^{\boxtimes 2})(\widetilde{J}))^{(45)} \cdot (\Phi^{135} \boxtimes \Phi^{246}) = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 2} \boxtimes \Delta^{\boxtimes 2})(\widetilde{J}))^{(45)} = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 3} \boxtimes \Delta^{\boxtimes 3})(\widetilde{J}))^{(45)} = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 3} \boxtimes \Delta^{\boxtimes 3})(\widetilde{J}))^{(45)} = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 3} \boxtimes \Delta^{\boxtimes 3})(\widetilde{J}) = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 3} \boxtimes \Delta^{\boxtimes 3})(\widetilde{J}))^{(45)} = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 3} \boxtimes \Delta^{\boxtimes 3})(\widetilde{J}))^{(45)} = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 3} \boxtimes \Delta^{\boxtimes 3})(\widetilde{J}) = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 3} \boxtimes \Delta^{\boxtimes 3})(\widetilde{J}))^{(45)} = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 3} \boxtimes \Delta^{\boxtimes 3})(\widetilde{J}))^{(45)} = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 3} \boxtimes \Delta^{\boxtimes 3})(\widetilde{J}) = (1^{\boxtimes 3} \boxtimes \widetilde{J}) = (1^{\boxtimes 3} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 3} \boxtimes \Delta^{\boxtimes 3})(\widetilde{J}) = (1^{\boxtimes 3} \boxtimes \widetilde{J}) = (1^{\boxtimes 3} \boxtimes$$

in $\mathcal{A}^{\boxtimes 6}$. Here we have used the following notation: for an element X in some (diagrammatic) tensor product, $X^{(ij)}$ is the element obtained from X by transposing its ith and jth factors.

We map the last equality into $\vec{\mathcal{A}}^{\boxtimes 6}$ (using $\iota: \mathcal{A}^{\boxtimes 6} \to \vec{\mathcal{A}}^{\boxtimes 6}$) and then apply the map $(p_+ \boxtimes p_-)^{\boxtimes 3} : \vec{\mathcal{A}}^{\boxtimes 6} \to (\mathcal{M}_+ \boxtimes \mathcal{M}_-)^{\boxtimes 3}$. Since p_\pm are $\vec{\mathcal{A}}$ -maps we get:

$$\begin{split} \Delta^{\boxtimes 3}(\Phi) \cdot (p_+ \boxtimes p_-)^{\boxtimes 3}((\widetilde{J} \boxtimes 1^{\boxtimes 2}) \cdot ((\Delta^{\boxtimes 2} \boxtimes \operatorname{id}^{\boxtimes 2})(\widetilde{J}))^{(23)}) = \\ (1^{\boxtimes 2} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 2} \boxtimes \Delta^{\boxtimes 2})(\widetilde{J}))^{(45)} \cdot (p_+ \boxtimes p_-)^{\boxtimes 3}(\Phi^{135} \boxtimes \Phi^{246}) \,. \end{split}$$

The crucial observation now (compare [EK1, Lemma 2.3]) is that

$$(p_+\boxtimes p_-)^{\boxtimes 3}(\Phi^{135}\boxtimes \Phi^{246})=(1_+\boxtimes 1_-)^{\boxtimes 3}$$

This follows from the fact that Φ is horizontal and the definitions of ι and p_{\pm} . We thus conclude that the following equality holds in $(\mathcal{M}_{+} \boxtimes \mathcal{M}_{-})^{\boxtimes 3}$:

$$\begin{split} \Delta^{\boxtimes 3}(\Phi) \cdot (p_+ \boxtimes p_-)^{\boxtimes 3} ((\widetilde{J} \boxtimes 1^{\boxtimes 2}) \cdot ((\Delta^{\boxtimes 2} \boxtimes \operatorname{id}^{\boxtimes 2})(\widetilde{J}))^{(23)}) = \\ (p_+ \boxtimes p_-)^{\boxtimes 3} ((1^{\boxtimes 2} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 2} \boxtimes \Delta^{\boxtimes 2})(\widetilde{J}))^{(45)}) \,. \end{split} \tag{5.10}$$

We introduce an auxiliary map $\psi: \mathcal{M}_{+} \boxtimes \mathcal{M}_{-} \to (\mathcal{M}_{+} \boxtimes \mathcal{M}_{-})^{\boxtimes 2}$, which is defined by

$$\psi(E) = (\widetilde{J}^{(23)} \cdot (i_+ \boxtimes i_-)(E))^{(23)} \,, \quad E \in \mathcal{M}_+ \boxtimes \mathcal{M}_- \,.$$

Note that

ary map
$$\psi: \mathcal{M}_{+} \boxtimes \mathcal{M}_{-} \to (\mathcal{M}_{+} \boxtimes \mathcal{M}_{-})^{\boxtimes 2}$$
, which is defined by
$$= (\widetilde{J}^{(23)} \cdot (i_{+} \boxtimes i_{-})(E))^{(23)}, \quad E \in \mathcal{M}_{+} \boxtimes \mathcal{M}_{-}.$$

$$\psi(1_{+} \boxtimes 1_{-}) = \widetilde{J} \cdot (1_{+} \boxtimes 1_{-})^{\boxtimes 2} = \phi^{\boxtimes 2}(J). \tag{5.11}$$

6 AMI HAVIV

We claim that ψ is an $\vec{\mathcal{A}}$ -map: Since i_{\pm} are $\vec{\mathcal{A}}$ -maps,

$$\psi(\Delta(D) \cdot E) = (\widetilde{J}^{(23)} \cdot \Delta^{(4)}(D) \cdot (i_+ \boxtimes i_-)(E))^{(23)}$$

for $D \in \mathcal{A}, E \in \mathcal{M}_+ \boxtimes \mathcal{M}_-$. Since \widetilde{J} is an element coming from an \mathcal{A} -space, we may use Proposition 3.20 and obtain

$$\psi(\Delta(D) \cdot E) = (\Delta^{(4)}(D) \cdot \widetilde{J}^{23} \cdot (i_{+} \boxtimes i_{-})(E))^{(23)}$$

 $= \Delta^{(4)}(D) \cdot (\widetilde{J}^{23} \cdot (i_{+} \boxtimes i_{-})(E))^{(23)}$
 $= \Delta^{(4)}(D) \cdot \psi(E),$

as required.

We next compute $(\psi \boxtimes id)\psi(1_+ \boxtimes 1_-)$ and $(id \boxtimes \psi)\psi(1_+ \boxtimes 1_-)$ in two ways. First, by the definition of ψ ,

$$\begin{split} (\operatorname{id} \boxtimes \psi) \psi(1_+ \boxtimes 1_-) &= ((1^{\boxtimes 2} \boxtimes \widetilde{J}^{(23)}) \cdot (\operatorname{id}^{\boxtimes 2} \boxtimes i_+ \boxtimes i_-) (\widetilde{J} \cdot (1_+ \boxtimes 1_-)^{\boxtimes 2}))^{(45)} \\ &= (p_+ \boxtimes p_-)^{\boxtimes 3} ((1^{\boxtimes 2} \boxtimes \widetilde{J}) \cdot ((\operatorname{id}^{\boxtimes 2} \boxtimes \Delta^{\boxtimes 2}) (\widetilde{J}))^{(45)}) \,, \end{split}$$

and similarly

$$(\psi \boxtimes \mathrm{id})\psi(1_{+} \boxtimes 1_{-}) = (p_{+} \boxtimes p_{-})^{\boxtimes 3}((\widetilde{J} \boxtimes 1^{\boxtimes 2}) \cdot ((\Delta^{\boxtimes 2} \boxtimes \mathrm{id}^{\boxtimes 2})(\widetilde{J}))^{(23)}).$$

Comparing with (5.10), we see that

$$\Delta^{\boxtimes 3}(\Phi) \cdot (\psi \boxtimes \mathrm{id})\psi(1_{+} \boxtimes 1_{-}) = (\mathrm{id} \boxtimes \psi)\psi(1_{+} \boxtimes 1_{-}). \tag{5.12}$$

Second, by (5.11) we have

$$(\psi \boxtimes id)\psi(1_+ \boxtimes 1_-) = (\psi \boxtimes id)\phi^{\boxtimes 2}(J)$$

= $(id^{\boxtimes 2} \boxtimes \phi)(\psi \phi \boxtimes id)(J)$.

Since both ψ and ϕ are $\vec{\mathcal{A}}$ -maps,

$$\psi \phi(D) = \Delta^{(4)}(D) \cdot \psi \phi(1) = \Delta^{(4)}(D) \cdot \phi^{\boxtimes 2}(J) = \phi^{\boxtimes 2}(\Delta(D) \cdot J)$$
,

for all $D \in \vec{\mathcal{A}}$. Therefore,

$$\begin{split} (\mathrm{id}^{\boxtimes 2} \boxtimes \phi)(\psi \phi \boxtimes \mathrm{id})(J) &= (\mathrm{id}^{\boxtimes 2} \boxtimes \phi)(\phi^{\boxtimes 2} \boxtimes \mathrm{id})((\Delta \boxtimes \mathrm{id})(J) \cdot J^{12}) \\ &= \phi^{\boxtimes 3}((\Delta \boxtimes \mathrm{id})(J) \cdot J^{12}) \,, \end{split}$$

so that

$$(\psi\boxtimes\operatorname{id})\psi(1_+\boxtimes 1_-)=\phi^{\boxtimes 3}((\Delta\boxtimes\operatorname{id})(J)\cdot J^{12})\,.$$

A similar computation shows that

$$(\operatorname{id} \boxtimes \psi) \psi (1_+ \boxtimes 1_-) = \phi^{\boxtimes 3} ((\operatorname{id} \boxtimes \Delta)(J) \cdot J^{23}).$$

Together with (5.12) we have

$$\Delta^{\boxtimes 3}(\Phi) \cdot \phi^{\boxtimes 3}((\Delta \boxtimes \mathrm{id})(J) \cdot J^{12}) = \phi^{\boxtimes 3}((\mathrm{id} \boxtimes \Delta)(J) \cdot J^{23}),$$

and using one more time that ϕ is an $\vec{\mathcal{A}}$ -map, we finally get

$$\phi^{\boxtimes 3}(\Phi \cdot (\Delta \boxtimes \mathrm{id})(J) \cdot J^{12}) = \phi^{\boxtimes 3}((\mathrm{id} \boxtimes \Delta)(J) \cdot J^{23}).$$

The proof of (5.9) is now finished by applying the map $(\phi^{-1})^{\boxtimes 3}: (\mathcal{M}_+ \boxtimes \mathcal{M}_-)^{\boxtimes 3} \to \vec{\mathcal{A}}^{\boxtimes 3}$.

A DIAGRAMMATIC RESHETIKHIN-TURAEV INVARIANT 87

The R-matrix of $\vec{\mathcal{A}}_{EK}$ is given, according to (4.27), by the formula

$$R_{\rm EK} = (J^{-1})^{21} \cdot \exp(\tfrac{1}{2} \buildrel \frac{1}{2} \buildrel \cdot J \,.$$

The expansion (5.8) of $R_{\rm EK}$ is then an immediate consequence of (5.7).