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5.1.5. The maps iy : M1 — My K My, Two more .:l—maps we will use below are the
maps iy : My — MoK Mg, The map iy is defined as follows:

ip(p+(D)) = (p+ W p )(A(D)), De A.
It is immediate to check that it is well-defined and is an A -map, namely
i+(DE) = A(D)iy ().
for all D e ;l E £ M. Similar definition and properties are shared by the map i_.

5.2. The diagrammatic Etingof-Kazhdan twist. Following [EK1], we construct an ele-
ment J € A®? as follows. Put

7 ZK(‘D c AB

and use the same symbol to denote «(J) AB4, St
J=(6""Me ) (p, Bp_ Bp, Bp_)(J) e A2,

By expressing the parenthesized braid in the formula for J as the composition of generating
associativity and braiding morphisms, and recalling (4.33), we see that

sz N 1 { +%I H [ + terms of degree =1,
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and it is then easy to check that

J= [ x + % ]{—I + terms of degree = 1. (5.7)

—

Theorem 7. Twisting ;I:KZ by F = J71 yields a quasitriangular Hopf structure on A,
denoted Agg, whose R-matriz is a quantization of the diagrammatic r-matriz:

Rpp = I N + H + terms of degree > 1. (5.8)

Proaf. By the transformation formula (4.26) of the associator under twisting, we have to

show that
<I)-[AEid)(J)-Jm:(idEA)(J)-JQS_, (5.9]

in order to prove that Apg is Hopf (that is, its coproduct is coassociative).
Our starting point is the topological equivalence of the following two parenthesized braids: /]71@, o/d

QF ﬂ\(,
o do ’{vmgr/j
‘ = | >= ‘ ' o) pesift

‘ AN ) ) | ) ) ) | L“ZVCI/ ﬂl(}'{

Applying Zk to both sides, using Definition 4.35 and the definition of .J, we find that

4 ] ]

.\.

AT(@) - (TR1Z) - (AP RId™) (1) = 1B T) - ((id™ BA®) ()4 - (' & o)
in A Here we have used the following notation: for an element X in some (diagrammatic)
tensor product, X () is the element obtained from X by transposing its ¢th and jth factors.

We map the last equality into AmS (using ¢ : A% ;IEG) and then apply the map
(py Bp_)® . A® (My B M_)®. Since py are ;l—maps we get:

AR(D) - (py Bp ) 2B(TR 12 - (AP R id™2)(T)®)) =
(1= R J) - ((1d® RA®) (1))@ - (py Bp_ =@ R $H6)
The crucial observation now (compare [EK1, Lemma 2.3]) is that
(p+ @p_‘JES((DISG & (1)246] — (]_+ & 1_)@3.
This follows from the fact that & is horizontal and the definitions of ¢ and py. We thus

conclude that the following equality holds in (M B M_ )5

AR (D) - (py Bp B (TR 1% - (AP Rid™)(]))®) =
(py Bp )12 R T) - (A2 RAR)(T))@)) . (5.10)

/")l\'leL V ée

We introduce an auxiliary map ¢ : My B M_ — (M; B M _)® which is defined by

W(E) = (J® (i, Ri_)(E)®, Ee M BM_. %, m/f,f/'fo Z
Note that ~ ///‘4(/'//6 ~
P14 B1) =T (1, 81)% =¢8]y, (5.11) )
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We claim that ¢ is an ;l—map: Since iy are A -maps,
W(A(D) - B) = (J® . AW(D) - (iy Bi_)(E))® .
for D e ;[ E e M B M_. Since J is an element coming from an A-space, we may use
(Proposition 3.20sand obtain
WA(D) - E) = (AD(D)- T2 . (i Bi_)(E))®
(B (iR (B
¥(

as required.
We next compute (¢ 0 id)(14 B 1_) and (idM)(1, B 1_) in two ways. First, by the
definition of 1,
(id Re)(1, ®1_) = (1R ). ((d2Ri, Bi_)(J - (1,8 1_)%2)#)
= (py Bp_ ) B((1F R T) - ((dRA™)(T) ")),
and similarly
(0 Bid)p(1 B12) = (py Bp )2 (TH 1) . (A® ®@id™2)(]))*) .
Comparing with (5.10), we see that
AB(D) - (v Rid)(1, ®B1) = (idB)(1, B1.). (5.12)
Second, by (5.11) we have
(0 Rid)p(1L B1_) = (v Bid)o™2 ()
= (id®2 &) (1o Bid)(J]) .
Since both # and ¢ are A -maps,
04(D) = AD(D) -6 (1) = AD(D) - B () = $(A(D) -.T),
forall De A. Therefore,
(i d®2 &) (1hp Rid)(J) = (id2Re) (6™ Rid)((A Rid)(J) - J*?)
= B(ABiA)() T2,
so that
(VRid)p(1L B1_) = ¢B(ARd)(]) - T*2).
A similar computation shows that
(B (1, B 1) = ¢B((dRA)(T) - J2).
Together with (5.12) we have
AR (D) OB((ARId)(]) - J2) = 6B ((IdRA)(T) - TP,
and using one more time that ¢ is an A -map, we finally get
GB(D - (ARI)(T) - J?) = ¢ ((dRA)(T) - JZ).

The proof of (5.9) is now finished by applying the map (¢)® : (M, B M_)® — ABE
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The R-matrix of Agy is given, according to (4.27), by the formula

By = (7 - exp(t 1 ) -

The expansion (5.8) of Rggk is then an immediate consequence of (5.7).
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