Drinfel'd Twists

February-21-10 9:04 PM

From Drinfel'd's Quasi-Hopf paper:

Suppose given a quasibialgebra $(A, \Delta, \varepsilon, \Phi)$ and an invertible element $F \in A \otimes A$ such that F(x, 0) = 1 = F(0, y). Put

$$\tilde{\Delta}(a) = F\Delta(a)F^{-1}, \qquad (1.11)$$

$$\tilde{\Phi}(x, y, z) = F(y, z)F(x, y * z)\Phi(x, y, z)$$

$$\times F(x * y, z) \xrightarrow{\Gamma} F(x, y)^{-1},$$
 (1.12)

where * corresponds to Δ (and not to $\tilde{\Delta}$). Then $(A, \tilde{\Delta}, \varepsilon, \tilde{\Phi})$ is also a quasibialgebra. We say that $(A, \tilde{\Delta}, \varepsilon, \tilde{\Phi})$ is obtained from $(A, \Delta, \varepsilon, \Phi)$ by *twisting* via the element F. Twisting via F_1F_2 is equivalent to twisting first via F_2 , then via F_1 .

So "homomorphic expansions" is the wrong paradigm. Which is the right one ?