Convex geometry: $A, B \subset \mathbb{R}^{n} \longrightarrow A+B=\left\{a+b: \begin{array}{c}a \in A \\ b \in \mathbb{R}\end{array}\right\}$ this is commutative and associative, tut has no cancellation property: $A+B=A+C \nRightarrow B=C$
(Example: $\begin{aligned} A & =C=1,1, B \\ & =000,\end{aligned}$
$=[0,1]^{\circ}$ $=\{0,1\}^{\prime}$
Consider the Gothendicek group...
claim $B \sim C$ if $D(B)=S(C)$ -convex hull
so we may as wall use only convex ats.
A function $f: \mathcal{L} \longrightarrow \mathbb{R}$, where \mathcal{L} is an infinite dimensional space, is a polynomial of degne n if it is of the form $f(x)=B(x, x \ldots, x)$ where B is multi-linenr $\mathcal{L}^{\otimes n} \rightarrow \mathbb{R}$.

The (Minkowski) The obvious extension of vol to the convox-sit-group in \mathbb{R}^{n} is polynomial of deg n.
.... Can define "mixed volumes" $V\left(0, \ldots \Delta_{n}\right)$, using the multilinuar form corresponding to Vol.
Notation: $\mathbb{X}=x_{1} \ldots x_{n} \quad X^{k}=x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$
p: A "Laurent poly" $\sum a_{k} X^{k}$ $\Delta(P)=\underset{\substack{\text { Newton poly } \\ O \in}}{\substack{\text { P }}}$ Convex hull of non-ttro coifs
$p:\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{C}$ Consider the system

$$
\begin{aligned}
& P_{1}=\ldots=P_{n}=0 \quad \text { W/ } P_{i} \text { Lacrant, } \\
& N(1)=1 \text {. }
\end{aligned}
$$

how many solutions are the ne $\quad D\left(l_{i}\right)=D_{i}$
in $\left(\mathbb{C}^{x}\right)^{n}$?
Bernstein-Kushnirenko (1975): The number of sol'ns is

$$
n!v\left(\Delta_{1} \ldots \Delta_{n}\right) \quad \text { (generically) }
$$

Propaties of mixed volumes:

1. Monotonicity: $\Delta_{i} \geq \Delta_{i}^{\prime} \Rightarrow V\left(\Delta_{i}\right) \geqslant V\left(D_{i}^{\prime}\right)$

The K-Kaveh generalization:

Claim B is "multi-linor" using $L_{1} L_{2}$ replacing addition

$$
L_{1} \ldots L_{n} \subset \mathbb{C}(x)
$$

cad. Subspaces of the space of all rations enos on X

$$
\left.\begin{array}{rl}
\left.L_{n}\right):= & \left|\left\{f_{1}=\ldots=f_{n}=0\right\}\right| \\
& w / \text { generic } F_{i} \in L_{i}
\end{array}\right)
$$

in count, ignore points in which one of the L_{i} is uniformly 0, and in which then's apple.

K-K: B has many proportion analog to the props of mixed volume.
Also, There is some assignment on "Newton Polyhodr" $\Delta(L) \subset R^{n}$ to L 's as above, w/ an analogue of the $B-K$ theorem.

$$
0: 46
$$

