Exponentiation exercises mod 6T and 4T December-09-09
9:14 PM
$6 T$

$$
\begin{aligned}
& {[x, z]+[x, y]+[z, y]=0} \\
& {[x, y]=[z, x-y]} \\
& {[y, x]=[x-y, z]} \\
& =\operatorname{ad}_{z} y-a d_{z} x \\
& {[y,[y, x]]=[y,[x-y, z]]=[[y, x-y], z]+[x-y,[y, z]]} \\
& =[[x-y, z), z]+[x-y,[y, z)] \\
& {[x,[y, z]]=[[x, y], z]+[y,[x, z)]} \\
& =[[z, x-y], z]+ \\
& \text { target: } W_{1}(x, z) W_{2}(y, z)
\end{aligned}
$$

can only be simplifica
in the world of tangles!

$$
\begin{aligned}
e^{y} e^{x}=e^{a d y}\left(e^{x} e^{y}\right) & =\left(e^{a d y}\left(e^{x}\right)\right) e^{y}=e^{e^{\alpha y} y} \cdot e^{y} \quad\left(\begin{array}{l}
=e^{e^{y} x e^{-y}} e^{y} \\
\\
=e^{y} l^{x} e^{-y} c^{y}
\end{array}\right)
\end{aligned}
$$

Did I ever do the corresponding exponentiation exercise $\bmod 4 T ?_{0}$

$$
\begin{aligned}
& e^{y} e^{x}=e^{a d y} x \cdot e^{y}=e^{x+z-e^{a d y}} l^{y}= \\
& =e^{x+y+z} e^{-e^{a d y} z-y} e^{y}=e^{x} e^{y+z} e^{-e^{d i d} z-y} e^{y}
\end{aligned}
$$

$$
[y, x]=-[y, z]
$$

Amazing?!
$[y,[y, x]]=-[y,[y, z]]$ tc.

$$
l^{a d y}(x+y+z)=x+y+z \Rightarrow l^{a d y} x=x+y+z-l^{a d y} z-y
$$

Question Can I turn "the trigonometric subset"
of $A_{n}^{\text {bor }}$ completaly symbolic/algorithmic?

$$
\begin{aligned}
& e^{l^{y} z e^{-y}+y} l^{x}=l_{0} \\
& x+y+z=e^{e y+e^{-y}+y}(x+y+z) e^{-e^{y} z e^{-y}-y} \\
& =e^{\left.a d(l)+e^{-y}+y\right)}(x+y+z) \\
& =e^{a d\left(e^{y} z e^{-y}+y\right)}(x)+e^{a d\left(b z z^{-y}+y\right)}\left(e^{y} z i^{-y}+y\right) \\
& +e^{a d\left(l^{y} z e^{-y}+y\right)}\left(z-e^{y} z l^{-y}\right) \\
& =e^{\operatorname{ad}\left(l^{y} z e^{-y}+y\right)}(x)+l^{y} z c^{-y}+y+\text { lont trm copiia } .
\end{aligned}
$$

So $e^{a d\left(e^{y} z e^{-y}+y\right)}(x)=x+z-e^{y} z c^{-y}+e^{\left.\operatorname{cd}^{(x y} z^{-j}+y\right)}\left(e^{y} l^{-y}-z\right)$

$$
\begin{aligned}
= & x+z-e^{y} z e^{-y}+e^{\operatorname{ad}\left(l^{y}+e^{-y}+y\right)}\left(e^{y} z e^{-y}+y\right) \\
& \quad e^{\operatorname{ad}(l y z+y+y)}(y+z) \\
= & x+z+y-e^{a d\left(l^{y} e^{-y}+y\right)}(y+z)
\end{aligned}
$$

So

$$
\begin{aligned}
& e^{i^{y} z c^{-y}+y} e^{x}=e^{\operatorname{ad}\left(\left(y z e^{-y}+y\right)\right.}\left(e^{x}\right) \cdot e^{i^{y} z e^{-y}+y} \\
& \quad=e^{x} e^{y+z} e^{-e^{\operatorname{ad}\left(\left(y z^{-y}+y\right)(y+z)\right.} \cdot l^{\left(y z c^{-y}+y\right.}}
\end{aligned}
$$

The hoxagon @ 要三: :

$$
e^{x+y}=e^{x+y+z-z}=e^{x+y+z} e^{-z}=e^{x} e^{y+z} e^{-z}=+
$$

A like trick in genoral?

$$
\begin{aligned}
& \exp \left(\sum a_{i j} t^{i j}\right)= \\
& t^{12}+t^{23}+t^{34}=t^{12}+t^{23}+t^{34}+t^{13}+t^{24}+t^{14}-t^{13}-t^{24}-t^{14}
\end{aligned}
$$

$$
\begin{aligned}
& t^{12}+t^{23}+t^{34}=t^{12}+t^{23}+t^{34}+t^{13}+t^{24}+t^{14}-t^{13}-t^{24}-t^{14} \\
&=t^{12}+t^{23}+t^{34}+t^{24}+t^{14}-t^{24}-t^{44} \\
&=-t^{1^{13}+t^{13}+t^{12}+t^{23}+t^{34}+t^{24}+t^{14}}-t^{24}-t^{14} \\
& \text { cuntral. } \\
& e^{t^{12}} e^{t^{13}+t^{23}} e^{t^{14}+t^{24}+t^{34}} \cdot e^{-t^{13}-t^{24}-t^{14}}
\end{aligned}
$$

$$
\begin{aligned}
& t_{i j}^{i} x^{i}=\left[x^{i}, x^{j}\right] \\
& t^{i j} \cdot x^{j}=\left[x^{j}, x^{i}\right]
\end{aligned}
$$

$$
l^{a^{d} x}(x+y+z)=x+y+z
$$

$$
e^{a d x} y=e^{-a d y-a d z} y
$$

$$
\begin{aligned}
e^{2 a d x} y & =e^{a d x}\left(e^{-a d y+z} y\right)= \\
& =e^{-a d e^{-a y+z} /(y+z)} e^{-a y+7} y=e^{-2 \alpha d(y+z)} y
\end{aligned}
$$

