Define $\alpha, \beta: \vec{D} \rightarrow \vec{A}$ by

$$
\begin{aligned}
& \alpha: \rightarrow \rightarrow+\rightarrow \\
& \beta: \rightarrow \rightarrow \rightarrow \leftarrow
\end{aligned}
$$

Question What are ked α and ger β ?
Ker α is (at least locally) 4T, by direct inspection (though a better proof would be welcome):

$$
\begin{aligned}
& |\rightarrow| \rightarrow|-|\rightarrow| \overrightarrow{\rightarrow \mid}|= \pm(|\vec{\rightarrow}|-|\rightarrow|>\mid) \\
& \Rightarrow 47
\end{aligned}
$$

(somaybe we got more thin 4T, as weave used less tan "all" of α)

Is $\beta(G T)$ a sum of CTs?

$$
|\rightarrow|+|\rightarrow| \rightarrow|+|+|>|=|\rightarrow| \rightarrow| \rightarrow|+|\rightarrow|
$$

U
preserve both arrays
reverse both arrows
Reverse one arrow:
... Probably not.

Some short sequences:

$$
\left\{\begin{array}{l}
4 \pi T_{1} A \\
\sin
\end{array}\right] \vec{D} \xrightarrow{\alpha} \vec{A} \text { folds to } A=\overrightarrow{2} / 4 \pi, \sin A \xrightarrow{\alpha} \vec{A}
$$

