Is there any "universal" intermediate between "homomorghic expansions" and "expansions"?

Are thar examples in which a gie does not exist?

Given a quasi-homomorphic expansion z, is the always a "central extension" of the source algebraic structure on which Z becomes an ordinary expansion?

Is There a chE for r/g-tangles L_{0}
Can we construct a qhE for the braid group, without using high-tech?
For braids, ghE would mean:

$$
Z\left(B_{1} B_{2}\right)=\nu\left(Z\left(B_{1}\right) \cdot Z\left(B_{2}\right)\right)
$$

Taking $B_{1}=I$, we get

$$
\begin{gathered}
Z(B)=V(Z(I) \cdot Z(B)) \\
\nu^{-1}(Z(B))=Z(I) \cdot Z(B) \\
v^{-1}(D)=Z(I) \cdot D \\
\nu(D)=Z(I)^{-1} \cdot D .
\end{gathered}
$$

Likewise with $B_{2}=I$ we get

Likewise with $B_{2}=I$ we get

$$
V(D)=D z(I)^{-1}
$$

$\Rightarrow Z(I)$ must be cental, and

$$
V(D)=Z(I)^{-1} \cdot D=D \cdot Z(I)^{-1}
$$

\Rightarrow Constructing a ghE dosn't seen easier than constructing a homomorphic expansion.

