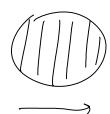
Guth@GSS: Inequalities about lengths, areas and volumes

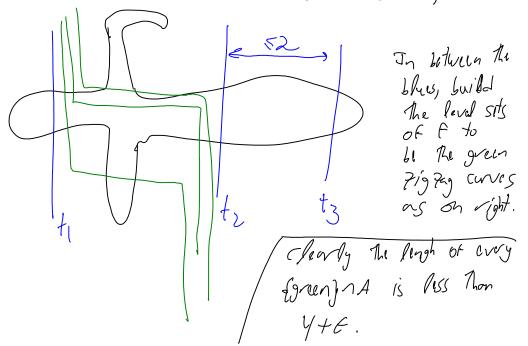
Thm (Guth, 2004) IF UCIR 1's open bounded and DUis smooth and Area(U)=1, then $\exists F: U \rightarrow \mathbb{R}$ S.t. $\forall t length(F'(t)) \leq 5$



DOF With(U):= min max length (F-1(+)) This & WilthU/2 & (. Area (U)

$$\frac{1 - 2 f hm}{1 - A(U) - \int_{-\infty}^{\infty} length(U \cdot dx = t) dt}$$

So Vn Itn F[n, n+1] s.t. length (Un[x=tn]) < 1



In between the bhus, build

Euved surfaces:

1-20 R3

The isoperimetric ing: AUNE) 5 Pon(25)2

Width(Σ)² \in CAra(Σ) is felse

Example: thicken the 1-skaleton of cubical grid just a bit, and look at the boundary surface. Yet Ihm IF Zz is a disk then

with $(\Xi)^2 \leq 10^4 Ann (\Xi)$

Higher Dimensions: $U^3 \subset \mathbb{R}^3$ width $(U) := \inf_{F:U \to \mathbb{R}} \sup_{f \in \mathbb{R}} \left(Arear(F^{-1}(f)) \right)$

The with-aren thm generalities, but no such Thins for M3 C R4.

Lowner's thm (1940s). If E^{Z} is a curved T^{Z} Then $\exists x \in Z^{Z}$ top. non-trivial s.t. Length $(x)^{Z} \leq 10 \cdot Area(Z)$

In higher dimension:

Gromov (1983): IF M'is a cured To then
there is a 8 CMM top. non-trivial with
length(8) To C. Vol(M)