Nice things: 1. 0-ary ops are "nullary"
 2. A "meadow" is like a field except the axiom about multiplicative inverses is replaced with \(\forall x \exists x^{-1}, x x^{-1}x = x \) not just \(x \neq 0 \)

Def: A monad is a functor
\[
T : \text{Set} \to \text{Set} \quad (\text{mapping } X \text{ to the})
\]
\[
T(TX) \xrightarrow{\text{M}} TX \quad \text{M is a "natural trans"},
\]
\[
(\text{precisely, } M \text{ is a natural trans})
\]
\[
T^2 \to T
\]

Bad:
* There is no monad for fields.
* Monads do describe compact Hausdorff spaces;
 \(T \) is "Stone-Cech".

Lawvere theories