

A long term question: Can the universal R/G invariant be

Mocals:1. Aim to understand situations where $\vec{n} \neq \overleftarrow{n}$ and $u \neq \mu$
2. Derive conditions on $\underset{\rightarrow}{\boldsymbol{u}, \boldsymbol{e}, \vec{n}, \stackrel{\eta}{n} \text { from } . ~}$ the XII Picture.

Question If we prove "formality" for some class of marked B / G tangles, how will it imply "weak formality" (that there is an expansion, maybe not homomoptce) for unmarked $R G$ tangles?

Question. Is all this somehow related to the fact that cup products are (super-)commutative?
(erobully not, own thong some simileris) exists.

$$
D=
$$

The all-virtual subcasi:

11

At global levch is $\alpha^{\text {r'g }}$ filtered (i.e., does one ever nued to go up befor coming down?)?

Likely it is indead filtured.

$$
\begin{aligned}
& -(\text { same })=0 \text {. } \\
& \infty \phi^{\prime}=\xrightarrow[\substack{1+a \\
1+a+\frac{a^{2}}{2}}]{\overrightarrow{\psi_{+}}-2 \rightarrow} \underset{\substack{1-a+a^{2} \\
1-a+\frac{r^{2}}{2}}}{\overrightarrow{\psi_{1}}}
\end{aligned}
$$

