The key points: Given a type \(n \) invariant \(\nu \) we are seeking a not-necessarily invariant extension \(\overline{\nu} \) of \(\nu \) to \(\nu\text{Kds} \) (virtual knot diagrams) with the following mandatory properties:

0. \(\overline{\nu}\big|_{\text{knots}} = \nu \).
1. \(\overline{\nu}(X) = \overline{\nu}(X') - \overline{\nu}(X'') \) \(\text{ALWAYS} \).
2. \(\overline{\nu} \) vanishes on \(\nu\text{Kds} \) w/ more than \(n \) \(\times \).
3. \(\overline{\nu}\circ S^{-1} \) vanishes on \(\nu\text{Kds} \) w/ more than \(n \) \(\times\text{gs} \).

Effective properties:

4. \(\overline{\nu} \) is invariant under descending peripheral extensions of double-point-only \(\nu\text{Kds} \).
5. \(\overline{\nu}\left(\begin{array}{c} \bullet \\ \frac{1}{i} \end{array} ; \begin{array}{c} \bullet \\ \frac{1}{j} \end{array} \right) = \overline{\nu}\left(\begin{array}{c} \bullet \\ \frac{1}{i} \end{array} ; \begin{array}{c} \bullet \\ \frac{1}{j} \end{array} \right) \)

\[\Box \text{ If } \overline{\nu} \text{ satisfying the mandatory properties exists, can we always modify it to find a } \overline{\nu} \text{ also satisfying the effective properties?} \]

\[\Box \text{ Restate the effective properties of } \overline{\nu} \text{ in terms of } \overline{\nu}\circ S^{-1} \]

\[\Box \text{ Can we also add invariance under } R1 \text{ & } R2? \]