Maxwell's Equations

$$
\begin{aligned}
& \text { current mag, field } \\
& \text { chary density Elect. field }
\end{aligned}
$$

ρ : Function $\rho: \mathbb{R}^{4} \rightarrow \mathbb{R}$

$$
E, B_{1} j: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}
$$

$$
\begin{aligned}
& \{f\} \underset{\nabla}{\{f\}}\left\{\left(\begin{array}{l}
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right)\right\} \xrightarrow[\nabla x]{\text { grad }}\left\{\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right)\right\} \xrightarrow[\nabla \cdot]{\text { curl }}\{\mu\} \\
& \left\{g: \mathbb{R}^{3} \rightarrow R^{3}\right\} \quad\left\{h: R^{3} \rightarrow \mathbb{N}^{3}\right\} \\
& F \rightarrow\left(\begin{array}{l}
\partial_{x} f \\
\partial_{y} f \\
\partial_{t} f
\end{array}\right) \quad\left(x_{1} x_{2} x_{3}\right) \nless(x, y, z) \\
& \left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right) \xrightarrow{\text { curl }}\left(\begin{array}{l}
\partial_{2} f_{3}-\partial_{3} f_{2} \\
\partial_{3} f_{1}-\partial_{1} f_{3} \\
\partial, f_{2}-\partial_{2} f_{1}
\end{array}\right)_{2}^{2} \\
& \operatorname{det}\left(\begin{array}{lll}
A_{1} & B_{1} & i \\
A_{2} & B_{2} & j \\
A_{3} & B_{3} & k
\end{array}\right) \\
& =\binom{\vdots}{A_{1} B_{2}-A_{2} B_{1}} \\
& \nabla \times F \\
& \nabla=\left(\begin{array}{l}
\partial_{1} \\
\partial_{2} \\
\partial_{3}
\end{array}\right) \quad f=\left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right) \\
& h=\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right) \xrightarrow[\substack{t_{1}}]{\operatorname{Liv}}+\partial_{1} h_{1}+\partial_{2} h_{2}
\end{aligned}
$$

Ot M1xucll equation: "Continuity" $\exists \sigma \in S_{y}$
cons. or $^{\text {ot }}$
o. $-\operatorname{div} j=\frac{\partial}{\partial+\rho}$ up to constants and sighs
cons of or
o. $-\operatorname{div} \dot{u}=\frac{\partial}{\partial t} \rho$
up to constants and sighs
durge cretes
Eletry fiald. $\sigma 1 \cdot \operatorname{div} E=\rho$
Electromagn'ts $\sigma 2$. curl $B=j+\underset{\text { 追 }}{\frac{\partial t}{\partial t}}$
genwators $\sigma 3$ curl $E=\frac{\partial B}{\partial t}$
No monopdes σ y $\operatorname{div} B=0 \quad$ no magnetic monopolus

"The Max will term"
5. Motion of a pertille in El.b:

$$
F=\underset{\substack{\AA_{d} \\ c_{\text {luge }}}}{e}(E+v \times B)
$$

