It's time to complete 2008-09\AlexanderEulerSpaces.nb!
(now at 2009-06/InfinitesimalAlexanderModules.nb)

The Infinitesimal Alexander Module
June 20, 09
6:15 AM

2009-06 Page 1

\[A = xB, \quad B = xA \Rightarrow \]
\[A = x^2A, \quad (1-x^2)A = 0 \]

\[e^{\alpha a}(b) = e^{\alpha}be^{-\alpha} \]
\[e^{\alpha}b - be^{\alpha} = (e^{\alpha a} - 1)b \cdot e^{\alpha} \]
\[\frac{e^{\alpha a} - 1}{e^{\alpha}} [a_{12}] = (e^{\alpha a} - 1)b = c^a b c^a - 6 \quad / e^a \]

Questions
1. Is this equivalent to the Alexander module?
2. Is there a structure theory for QCD modules? Can we get invariants out of this one?

Speculation
To understand the Alexander polynomial, we will also have to understand "the other infi. Alexander modules", its "tensor product" or somehow "fusion" with the ordinary infi. Alexander modules, the canonical element in that fusion, and the extension by "wheels".

Speculation In some sense there is a bunch
Speculation In some sense there is a bunch of Alexander modules parametrized by the knot itself, along with a connection. The Alexander polynomial is the Jacobian of the holonomy of that connection.