Exponentials are like bank machines in dreamland—
you can withdraw as much cash as you wish, you can keep or throw or spend the cash,
yet the ATM remains completely unchanged.

Mathematical formulation: With \(V \) the V.S W/ basis \((\mathbb{C}, \leq)\), with \(S(V) \rightarrow S(V) \)
the “split The cash co-product”, with
\(p: S(V) \rightarrow W \) the purchasing map, we have:

\[
\begin{align*}
V & \xrightarrow{\text{ATM}} V \otimes V \xrightarrow{\text{coproduct}} V \otimes W \\
& \xrightarrow{\text{map}} e^{x^2} \otimes p(e^x)
\end{align*}
\]

This of course is a generalization of \((e^x)' = e^x\)
with \(p: x \rightarrow 1 \)
\(x^k \text{ with } k > 1 \rightarrow 0 \).

So exponentials are vector-space analogs of Hilbert's hotel; they are “infinite reservoirs”; take one (or many) out, and the reservoir remains unchanged.