Given a band graph G in \mathbb{R}^{3}, lit K be its Thickening assume it is a knot.
[So G is the core of a Seifert surface of $K]$. Assume G is already projected to The plane.

Lit iss enumerate the edges of G. Let L be the "linking matrix" of 6 :
$L_{i j}:=\binom{$ the number of times edge $i}{$ goes over edge j, signs counted }
Let $S^{ \pm}$be the "structural matrices" of G :

$$
\left(S=S^{+}\right)_{i j}=\left(\begin{array}{l}
\text { In the path in } \partial G \text { from the } \\
\text { loft head of } i \text { to the right } \\
\text { hond of } i \text {, the signed incidence } \\
\text { of } j . \\
{\left[s_{i i} \text { is included }\right]}
\end{array}\right)
$$

$S_{i j}$ is the same, with hoods replaced by tails.
comment: It should be easy to compute LiS for the seifut surfaces associated with braid presentations.

There ought to be a formula for $A(k)$ in terms of L and S. It should involve $\operatorname{tr}(I-L S)^{-1}$.

