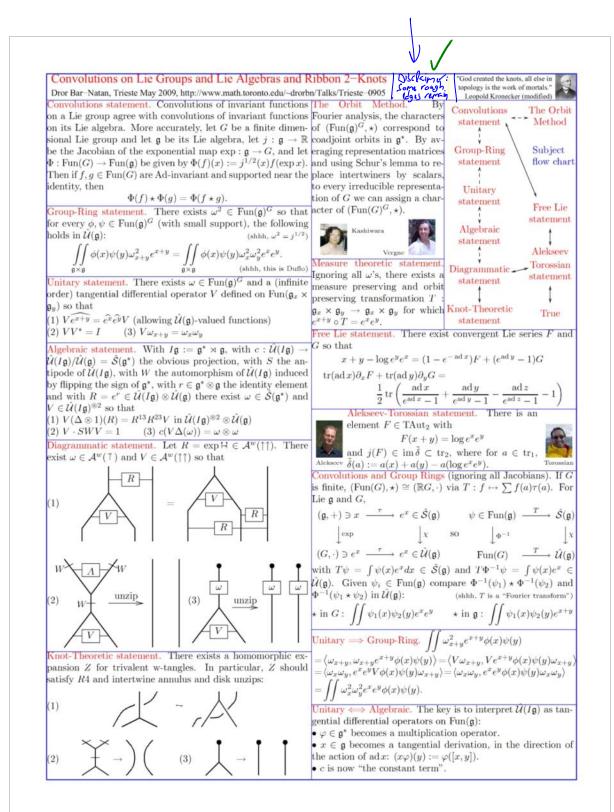
Trieste Handout as of May 12

May-12-09 2:38 PM



May 12, 2009 DRAI Convolutions on Lie Groups and Lie Algebras and Ribbon 2-Knots, Page 2 What are w-Trivalent Tangles The virtual crossing 00 00000000000000 OC (knots) $=PA\langle \times | R123 : \bigcirc = \rangle, \bigcirc = \rangle$ 0 &links 0 (trivalent 3 R123, R4 : 🔨 tangles $\bigcirc \circ$ 0 The crossing The cap +w The vertices wTT= singular (trivalent The Klein PAw-tangles generators relations operations glink queensu ca The w-relation The w-operations should ops be green Zo Add the M Add : Challonge, do The Reidemensta w-Jacobi diagrams and \mathcal{A} . $\mathcal{A}^w(Y)$ Diagrammatic to Algebraic. With (x_i) and (φ^j) dual bases of \mathfrak{g} and \mathfrak{g}^* and with $[x_i, x_j] = \sum b_{ij}^k x_k$, we have $\mathcal{A}^w \to \mathcal{U}$ via $\overrightarrow{4T}$: $\overrightarrow{1}$ + $\overrightarrow{1}$ = $\overrightarrow{1}$ + $\overrightarrow{1}$ b_{kl}^m b_{i}^{k} $_{k}$ 2 Mrsg w = 0 -+--+ +++ #{vertices}=6 $dcg = \frac{1}{2}$ Δ acts by double and sum, S by reverse and negate. $\sum b_{ij}^k b_{kl}^m \varphi^i$ $x_n x_m \varphi^l \in \mathcal{U}(I\mathfrak{g})$ From wTT to \mathcal{A}^w . gr_m wTT := {m-cubes}/{(m+1)-cubes}: 7 Vas \otimes \propto 9 forget Gons topology 9 Polyal Homomorphic expansions for a filtered algebraic structure \mathcal{K} : A concrete example The set of all b/w 2D projec-tions of reality $ops \mathcal{K} = \mathcal{K}_0 \supset \mathcal{K}_1 \supset \mathcal{K}_2$ $\supset \mathcal{K}_3 \supset ...$ $\downarrow z$ $\operatorname{ops}^{\frown}\operatorname{gr} \mathcal{K} := \mathcal{K}_0/\mathcal{K}_1 \oplus \mathcal{K}_1/\mathcal{K}_2 \oplus \mathcal{K}_2/\mathcal{K}_3 \oplus \mathcal{K}_3/\mathcal{K}_4 \oplus \dots$ K'/KAn expansion is a filtration respecting $Z : \mathcal{K} \to \operatorname{gr} \mathcal{K}$ that Crop Rotate Adjoin "covers" the identity on $\operatorname{gr} \mathcal{K}$. A homomorphic expansion is an expansion that respects all relevant "extra" operations $\frac{\text{an expanse}}{\text{Our case. }}$ given a "Lic" algebra g An expansion Z is a choice of a algorithm " $\mathcal{U}(\mathfrak{g})$ " $\operatorname{gr} \mathcal{K}$ solving finitely many equations in finitely many unknowns low algebra: pic-tures represent crop $\mathcal{K}/\mathcal{K}_0 \oplus \mathcal{K}_0/\mathcal{K}_1 \oplus \mathcal{K}_1/\mathcal{K}_2 \oplus \mathcal{K}_2/\mathcal{K}_3 \oplus \mathcal{K}_3/\mathcal{K}_4 \oplus \mathcal{K}_4/\mathcal{K}_5 \oplus \cdots$ 11 \mathcal{K} is knot theory or topology; gr \mathcal{K} is finite combinatorics: adjoin $\ker(\mathcal{K}/\mathcal{K}_3 \rightarrow \mathcal{K}/\mathcal{K}_2)$ R bounded-complexity diagrams modulo simple relations. We skipped... • The Alexander • v-Knots, quantum groups and Filtered algebraic structures are cheap and plenty! In any \mathcal{K} , allow formal linear combinations, let \mathcal{K}_1 be the ideal polynomial and Milnor numbers. Etingof-Kazhdan. • u-Knots and Drinfel'd associa- • BF theory and the successful generated by differences (the "augmentation ideal"), and let $\mathcal{K}_m := \langle (\mathcal{K}_1)^m \rangle$ (using all available "products"). religion of path integrals. ors this page in rar so logical order Put Still missing: 1. Relation with A-T. But we have (at host)

2009-05 Page 2

3 Knot Thories -U-V-W,

and thus their "high algebras" are ve bated.