Some wikipedin wisdom

A Kac-Moody algebra is given by the following:

- 1. An n by n generalized Cartan matrix $C = (c_{ii})$ of rank r.
- 2. A vector space \mathbf{h} over the complex numbers of dimension 2n r
- 3. A set of n linearly independent elements α_i of \mathfrak{h} and a set of n linearly independent elements α_i^* of the dual space, such that $\alpha_i^*(\alpha_j)=c_{ij}$. The α_i are known as **coroots**, while the α_i^* are known as **roots**.

The Kac–Moody algebra is the Lie algebra $\mathfrak g$ defined by generators e_i and f_i and the elements of h and relations

- $[e_i, f_i] = \alpha_i$
- $[e_i, f_j] = 0$ for $i \neq j$
- $ullet [e_i,x]=lpha_i^*(x)e_i$, for $x\in \mathfrak{h}$
- $[f_i,x]=-lpha_i^*(x)f_i$, for $x\in\mathfrak{h}$
- [x, x'] = 0 for $x, x' \in \mathfrak{h}$
- $ad(e_i)^{1-c_{ij}}(e_j) = 0$
- $ad(f_i)^{1-c_{ij}}(f_j) = 0$

A generalized Cartan matrix is a square matrix

 $A = (a_{ii})$ with integer entries such that

- 1. For diagonal entries, $a_{ii} = 2$.
- 2. For non-diagonal entries, $a_{ij} \leq 0$.
- 3. $a_{ii} = 0$ if and only if $a_{ii} = 0$
- 4. A can be written as DS, where D is a diagonal matrix, and S is a symmetric matrix.

The third condition is not independent but is really a consequence of the first and fourth conditions.

