A Kac–Moody algebra is given by the following:

1. An n by n generalized Cartan matrix $C = (c_{ij})$ of rank r.
2. A vector space \mathfrak{h} over the complex numbers of dimension $2n - r$.
3. A set of n linearly independent elements α_i of \mathfrak{h} and a set of n linearly independent elements α^*_i of the dual space, such that $\alpha^*_i(\alpha_j) = c_{ij}$. The α_i are known as coroots, while the α^*_i are known as roots.

The Kac–Moody algebra is the Lie algebra \mathfrak{g} defined by generators e_i and f_i and the elements of \mathfrak{h} and relations:

- $[e_i, f_j] = \alpha_i \delta_{ij}$
- $[e_i, f_j] = 0$ for $i \neq j$
- $[e_i, x] = \alpha^*_i(x) e_i$ for $x \in \mathfrak{h}$
- $[f_i, x] = -\alpha^*_i(x) f_i$ for $x \in \mathfrak{h}$
- $[x, x'] = 0$ for $x, x' \in \mathfrak{h}$
- $\text{ad}(e_i)^{1-c_{ii}}(e_i) = 0$
- $\text{ad}(f_i)^{1-c_{ii}}(f_i) = 0$

[e_i, e_j], $[f_i, f_j]$ = $[e_i, [e_j, f_i]] + [f_i, [e_j, e_i]]$

= $[\alpha_i, e_j], f_i] + [f_i, [e_i, \alpha_j]]$

= $-\alpha^*_j(\alpha_i) e_i, f_j] + [f_i, \alpha^*_j(\alpha_i)] e_i$

= $-\alpha^*_j(\alpha_i) \alpha_j - \alpha^*_i(\alpha_j) \alpha_i$

= $-C_{ij} \alpha_i \alpha_j - C_{ij} \alpha_i$