Thm (Alexander) S^3 is irreducible; that is, every smooth S^2 bounds a ball.

Def M is prime if $M = M_1 \# M_2 \Rightarrow M_1 = S^3 \text{ or } M_2 = S^3$

Thm A prime M^3 is irreducible or $M \cong S^1 \times S^2$

Thm (Kneser, Milnor) Unique factorization into primes for arbitrary M^3's.

Def A 2-disk $(D, \partial D) \subset (M, \partial M)$ is essential if ∂D does not bound a disk in M.

Thm (Bonahon) If M is irreducible, then ∂M is a submanifold that contains ∂M and (up to isotopy) all essential boundary disks in M.

A Seifert Fiber Space (SFS): $M \cong \Sigma$ circles, locally like

\[\text{glue with rotation} \]

The space of fibers of an SFS is a surface F.

JSJ For knot complements. Let M_k be the knot complement of $K \subset S^3$. There are four possibilities:

1. $K = V$, $M_k = S^1 \times D^2 \cong \text{ess. } D^2$
2. $K = T^n$, M_k is an SFS w/ ρ^n
3. Satellite knots have an essential T^2 in their complements.
 This is iff M_k has an essential T^2_k is a satellite.

4. Otherwise M_k is hyperbolic.