A parity p on a “knot theory” (a theory of words in the sense of Turaev) is an assignment of a parity in $\mathbb{Z}/2$ for every knot diagram, so that

1. p is invariant relative to the “identity of xing” partial connection [so it is local and has a $\not\exists\not\exists$ property and $R3$].

2. The sum of the parities of the xings involved in an $R1$, $R2$, or $R3$ move is even.

Examples

1. The number of chords (mod 2) intersecting a given chord, for v-knots.

2. For links, the parity of the number of components involved in a given xing.

Question Is there a non-trivial parity for honest 1-component v-knots?

The “odd & irreducible” is minimal in a strong sense follows from

$$\text{prop} \sum_{\text{mod}2} (\text{1-component Kauffman smoothings of even xing}) / \text{moves}$$

is invariant also under $R3$.

Another corollary: Non-trivial free knots exist

Free knots = CA \langle \star \rangle / R1, R2, R3 & \star

Question: Classify free knots.