What means
\[M = \begin{array}{c}
\Rightarrow \\
\Rightarrow \\
\end{array} \]
\[\text{global in Lie theory?} \]

Alternatively, how is \(U(I_g) \otimes U(I_g) \otimes U(g) \)
to be interpreted?

\[U(I_g) \otimes U(I_g) \otimes U(g) \]
tangential differential operators on \(\text{Fun}(g \otimes g) \),
constant-coefficient tangential differential with not-necessarily-constant operators on \(\text{Fun}(g) \)
coefficients
\[\sim \text{measures on } g. \]

From this perspective, "convolution" takes functions on \(g \otimes g \) to measures on \(g \),
by integrating \(M(f(x)g(y)) \) w.r.t. both \(x \) and \(y \).

\[M = \begin{array}{c}
\Rightarrow \\
\Rightarrow \\
\end{array} \]
\[m = \begin{array}{c}
\Rightarrow \\
\Rightarrow \\
\end{array} \]
Both are functions on \(g \) with values in \(U(I_g) \).

What means \(F \hat{M} = \hat{F} \)?
for a tangential differential operator \(F \in U(I_g) \otimes \)?

"\(T \) is tangential" implies that if \(F \) is invariant then
\[TF = T_0 F, \]
where \(T_0 \) is the [well-defined?] degree
of part of \(T \).

Let \(F \) and \(g \) be invariant. Then
\[\text{Goal: up to a } j \text{-correction,} \]

2009-04 Page 1
\[\int F M(f \circ g) = \int M F(f \circ g) \quad | \quad M f \circ g = M f \circ g \]

\[\Rightarrow \int (F^* 1) M(f \circ g) = \int M F_0(f \circ g) \]

\[\Rightarrow \int (F^*)_0 M f \circ g = \int M F_0 f \circ g \]

So all we need is to interpret \((F^*)_0\) and \(F_0\) as "the \(j\) correction". There seen to be two equations here, one to fix \(F_0\) and one to fix \((F^*)_0\). There should be a way to reduce this to one.

Question For which \(j_0, \in \mathcal{A}(1^n)\) can we find a \(V \in \mathcal{A}(1^n)\) so that

\[j_0 = V_0 \quad \text{and} \quad j_1 = (V^*)_0 \quad 2 \]

Might the topological interpretation of all that be the need for "edge renormalization"? 2

\[\begin{array}{c}
\text{\begin{tikzpicture}[baseline=-.5ex]
\draw (-1,0) -- (0,0) -- (1,0);
\draw (-1,-1) -- (0,-1) -- (1,-1);
\end{tikzpicture} \hspace{1cm} \text{untwist} \hspace{1cm} \begin{tikzpicture}[baseline=-.5ex]
\draw (0,0) -- (0,-1);
\end{tikzpicture}} \end{array} \]

There may another topological operation?

\[\begin{array}{c}
\begin{tikzpicture}[baseline=-.5ex]
\draw (0,0) -- (0,1);
\end{tikzpicture} \rightarrow \begin{tikzpicture}[baseline=-.5ex]
\draw (0,0) -- (0,1);
\end{tikzpicture} \end{array} \]