<table>
<thead>
<tr>
<th>u-knots</th>
<th>v-knots</th>
<th>w-knots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knots are virtual knots:</td>
<td>4 [w \text{-knots} = v \text{-knots} \text{ (OCC)}]</td>
<td></td>
</tr>
<tr>
<td>[v \text{-knots} }]</td>
<td>where (\text{OCC}) is Overcrossings Commute:</td>
<td></td>
</tr>
</tbody>
</table>

Combinatorics

- Similar with enriched Lie algebras replacing arbitrary Lie algebras
- Similar with Lie bialgebras replacing arbitrary Lie algebras

Low algebra

- Theorem. Given a finite dimensional Lie algebra \(g \), there is a formula for the Lie algebra \(\mathfrak{g} \).

High algebra

- Theorem. \(Z \) is a Quantum Group.
- More precisely, a homomorphic \(Z \) is equivalent to the Etingof-Kazhdan theory of deformation quantization of Lie bialgebras.

Mathematical Structures

- \(z \) is a Quantum Group?
-

Remark

- Switch to \(w \)-knotted tridend tangles.
- \(\text{wKTT} = \text{CA} \) for \(\text{CA} \).
- \(\text{wKTT} = (\text{CA} \cup \text{X}) \).
- \(\text{wKTT} = (\text{Fun}(\mathbb{G})) \).
- \(\text{wKTT} = (\text{Fun}(\mathbb{G})) \).

Analytical Notes

- Closely related to the "what method of representation theory?"