All V Equations

$$
\begin{aligned}
& m V=V M \\
\Rightarrow & V^{*} m=M V^{*}
\end{aligned}
$$

$$
\begin{aligned}
V^{*} V & =I \\
?_{0} & \Rightarrow V V^{*}=I
\end{aligned}
$$

$$
T \rightarrow T \Gamma v^{*} w(x+y)=w(x) w(y)
$$

$$
\int w(x+y) m f=\langle W(x+y), m f\rangle
$$

$$
=\left\langle V^{*} w(x+y), V^{*} m f\right\rangle
$$

$$
=\left\langle w(x) w(y), M V^{*} f\right\rangle
$$

assuming $V^{*} F=F$

$$
\begin{aligned}
& =\langle w(x) w(y), M f\rangle\left[\begin{array}{c}
\text { meaning } V^{*} \text { is tangential } \\
\text { not } V
\end{array}\right]
\end{aligned}
$$

\Longrightarrow It might be a good idea
These equations imply $k-V: ?_{0}$

$$
\begin{aligned}
\int w(x+y) m f & =\langle 1, w(x+y) m f\rangle= \\
& =\langle \\
\int w(x) w(y) M f & =\langle w(x) w+(y), M f\rangle \\
& =\langle V w(x) w(y), V M f\rangle \\
& =\langle w(x+y), m V f\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\langle w(x+y), m V f\rangle \\
& =
\end{aligned}
$$

