 Characters of finite Chevalley groups and categorification

W. Finkelberg, Ostrik.

G: Finite group

A representation \(p : G \to \text{GL}(V, q) \) (homomorphism)

assume \(p \) is irreducible.

The character \(\chi_p : G \to \mathbb{C} : \chi_p(g) = \text{Tr}(p(g)) \)

Questions 1. Describe \(\text{Irr}(G) \)

2. Compute all \(\chi_p \) s.

Concentrate on \(G \) like \(\text{GL}_n(\mathbb{F}_q) \); in general, \(G = G(\mathbb{F}_q) \) where \(G \) is an algebraic group over \(\mathbb{F}_q \).

(Solved by Lusztig, sometimes with brute force)

Goal: A more conceptual approach to this theory.

characters are functions \((G = X)(\mathbb{F}_q) \to \mathbb{C} \)

Grothendieck's idea: such can come from:

\[
X(\mathbb{F}_q) = X(\mathbb{F}_q)^{F \text{red}}
\]

\[
\downarrow
\]

\[
M^F \quad \text{a manifold } M^F/\text{an automorphism } F
\]

A function could come from an equivariant sheaf on \(F \)

\[F_x \quad \text{a sheaf } \quad \text{and } \text{isomorphism } \quad F_x \cong F_{F^x} \]

\(\Rightarrow \) get traces at the fixed points of \(F \).

Really, we will violate "sheaves" with "complexes"
Really we will replace "sheaves" with "complexes of sheaves". More specifically "purposes sheaves".

Induced representations: Given a representation ρ of $H \leq G$: \[(\rho : H \to GL(V))\]

\[\text{Ind}_H^G(\rho) = \{F : G \to V : F(gh) = \rho(h^{-1})F(g)\}\]

Suppose \[G \supset B \longrightarrow T\]

"Borel" "Cartan" (Abelian)

If $\chi \in T^V$ set \[i_\chi = \text{Ind}_B^G(\chi)\]

For most χ this is irreducible, though consider $\chi = 1$ \[\Rightarrow i_\chi = \mathbb{C}[G/B]\]

Set \[\mathcal{P}_i := \{p \mid p \supset i_\chi\} \subset p \supset 0\]

4:49