Q: Is F uniquer No. "The Two F Equations".

$$
\begin{aligned}
& F^{-1} e(x+y) F=e(x) e(y) \\
& F^{23} R^{1,2_{3} 3}=R^{12} R^{13} F^{23} \longleftrightarrow-\lambda=\lambda \\
& R F^{21}\left((-t)=F \longleftrightarrow \frac{1}{1}=\frac{1}{1}\right. \\
& \text { + a glow condition }
\end{aligned}
$$

Is it justified to treat $f 1$ and $f 2$ in F as constants, ignoring their

Question IS

$$
A^{v}(\Lambda) / A_{1}^{\pi}=0 \cong A^{w}(\nearrow) ?_{0}
$$

This mons "tails commute when their hands are near" No. See "Dogger 2 for virtual Knots". 2008-05/Maciej Niebrzydowski's Question is similar yet different
Docs $\alpha: A \rightarrow A^{2}(Y) / p^{x}$ init?
Question What amain of A^{V} if it is forced to be "invariant" in the sense of declaring

Is every ribbon knot the square, or more precisely, the "norm", of some w-knot? This may give a nice explanation of $A(t)=f(t) f(-t)$.

Is there an MMR statement for virtual?

Do satfelite operations mako sense for virtual knots? If not, is this the reason why products should be deformed not just co-products? Why v-knots should be "textured" rather than "smooth"?

There is not enaigh idle exploration on this Pensieve.

