<table>
<thead>
<tr>
<th>Log / BCH</th>
<th>Scatter and Glow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almost the first thing that</td>
<td>Definitely not the first thing</td>
</tr>
<tr>
<td>comes to mind.</td>
<td>you would consider</td>
</tr>
<tr>
<td>$Z = \exp(L)$ illusion of sympathy</td>
<td>$Z = G^{-1}(\Gamma)$ Looks mysterious</td>
</tr>
<tr>
<td>All you need is L</td>
<td>All you need is Γ, but without</td>
</tr>
<tr>
<td></td>
<td>I, you cannot in practice compute anything</td>
</tr>
</tbody>
</table>

Needs BCH

Two options:

"All stands at once"
- BCH/[[L,L],[L,L]] is not sufficient

"BCH stand by stand"
- may work.

No consistency condition required.

I don’t know how to write the consistency that is required between S and G.

This when solving equations, the unknown remains Z or L and cannot be replaced by G.

\Rightarrow The $L \rightarrow G$ function must be explicitly computable.

Composition is highly non-linear, involves multiple BCH’S and I don’t really understand how to implement it.

Composition is reasonably clear.

Makes sense only in A-resultion.

Makes sense in all intervals.
Composition is highly non-linear, involves multiple BCH's, and I don't really understand how to implement it.

Composition is reasonably clear.

Make sense only in A-respecting internal quotients.

Makes sense in all internal quotients, including ones in which disconnected relations are allowed.

Question: Can we use this, say, for the Jones quotient of A (classical F.T., now)?

Conclusion: For now, scatter and flow wins, though only because of my present difficulties working with BCH. Once I overcome these, Log/BCH may win.