M: oriented 3-manifold, ξ: tangent plane field
$\xi = \ker \alpha$, $\alpha \in \Omega^1(M)$

ξ is a contact structure if α_{ext} is a positive volume form on M.

An integral surface for ξ.

Problem: classification of contact structures up to isotopy.

Thm. (Gray) If ξ_1, ξ_2 are close in the C^1 sense, then they are isotopic

$\Rightarrow \text{Cont}(M)/\text{isotopy} \text{ is a discrete set.}$

A contact structure is "overtwisted" if

$\exists \hat{\xi} : (M, \hat{\xi})$ s.t. $TD_{2D} = \mathbb{R}^2$

Otherwise it is "tight".

Thm. (Eliashberg) $\text{Cont}^+(M)/\text{iso} \cong \frac{\text{Dist}^+(M)}{\text{horotopy}}$

Today $-\Sigma(2, 3, (n-1)) = M = Y_n = \text{surgery on } S^0$

Thm. (with Van Horn-Morris)

On Y_n there are $\frac{n(n-1)}{2}$ distinct tight contact structures.
tight contact structures. a triangular number

\[i = 0 \quad \text{for } Y_i \]

\[\eta_{ij} \quad 0 \leq i \leq n-2 \quad n-2 \leq j \leq (n-1) \]

\[\sigma \]

History: 1996: Lisca & Matic distinguished the bottom row using s-w theory
2000: Etnyre-Honda: \(Y \), admits no tight.
2005: Ghiggini: top element is strongly fillable, but not Stein fillable.

My usual question: is there a combinatorial meaning to "tight contact structure"?
Another question: If I had a contact structure, what would I do with it?