From the GPV page of 2006-09:

Given V, we need an extension of V to singular semi-virtual knot diagrams, satisfying

$$E_1: \not\not\not \rightarrow \not\not \rightarrow \not\not \rightarrow$$

$$E_2: \not\not \not \rightarrow \not\not \not \rightarrow$$

Failure #1 Extend V by 0. If a diagram has a $\not\not\not$ or a $\not\not\not$, V is zero.

Defect: No reason it should satisfy E_1.

Failure #2 Extend V by 0 to $\mathcal{C}_0\not\not\not$

Use E_1 to extend it to $\mathcal{C}_0\not\not\not\not\not\not\not$

Defect: No reason it should satisfy E_2.

Moral: The extension must take account of the original, best by a “projection” $P: \mathcal{C}_0\not\not\not\not\not\not\not \rightarrow \mathcal{C}_0\not\not\not$

for which $\left(P \circ \mathcal{I} \right)(D)$ is isotopic to D, for $\mathcal{C}_0\not\not\not$,

where $\mathcal{I}: \mathcal{C}_0\not\not\not \rightarrow \mathcal{C}_0\not\not\not$ is the obvious inclusion.

Failure #3 Define P by mapping any virtual ring to (say) an under-crossing, extend by means of E_1.

Promise: Will satisfy E_2?

Defect: Makes no sense! There is no such thing “virtual rings”! And if you force a choice of a PVD representing the given VD, the result will depend on that choice.

Moral: We need an algorithm that given a virtual
knot produces a canonical way of drawing it in the plane, so that when applied to a non-virtually it acts as the identity.

Failure #4: Given a Gauss Diagram, find a spanning tree in it and embed it in the plane, then connect the leaves using descending strands. [Then extend using E1]

Problem: It is hard to understand E2. If a crossing goes virtual, the spanning tree goes bad and we cannot control the difference X - X.

Question: Is this a real defect or just a failure in our ability to prove something?