Q: Is there a "bracelets" version of the GPV theory?

Given V, we need an extension of V to virtual knot diagrams which is fit in the virtual sense.

Given V, we need an extension of V to singular semi-virtual knot diagrams, satisfying

1. $\emptyset = \emptyset - \emptyset$
2. $\emptyset \emptyset \ldots \emptyset = 0$

My psychology:

- Succeed more
- Fail less and less
- The intermediate steps can be kept for good (as they are good) and thus the result is more vindicatable
- Worthless until the process converges.
- Requires much more belief and confidence in one's own competence.

(Or...coffe)
Bad mathematician: reads the proof
Good: finds the proof
Mediocre: reads the proof and understands how the good mathematician found it.

Good reading of a proof: “Suppose I was a bit smarter, had a bit more time and a bit more background, how would I have found this proof?”

Solid understanding of X: You’d still understand X even on a bad brain day, when your concentration isn’t at its top.