Question: What are all A spaces worth computing?

For A, the answer is A(Γ) for every graph Γ, and these are all isomorphic to A(0_k 1_l).
A bit more (though it excludes link relations) is the representation ε_k for every k.
A bit more is to include all disjoint union operations or uni-trivalent graphs, and all capping ops

\[\begin{array}{c}
\text{by} \\
\text{[capping]} \\
\text{[to]} \\
\end{array} \]

Note: These spaces and maps all have surface (M) analogs.

The arrow analog should be

* Determine all representations ε_{k,l}, with k incoming and l outgoing arrows.
* Determine all disjoint union ops.
* Not sure...
* Determine all contraction ops

\[\varepsilon_{k,l} \rightarrow \varepsilon_{k-1,l-1} \]

* Determine the map

\[\chi : \varepsilon_{r} \rightarrow \bigoplus_{k+l=r} \varepsilon_{k,l} \]

Is there a "duality"?

\[\varepsilon_{k,l} \rightarrow \varepsilon_{l,k} \]

All should have surface analogs?