Alexander - the exact formula

$a_{i}: \operatorname{arrow} \# i$
$d_{i}:$ The dilution
of d_{i} $S_{1}:$ The sign of both in $\{ \pm\}$
Given a gauss diagram D, let $A=A(D)$ be the matrix with

$$
A_{i j}= \begin{cases}d_{i}\left(e^{s_{i} x}-1\right) & \text { if icj and } a_{i} \text { uss within } \\ \text { the span of } a_{i} \\ 0 & \text { otherwise }\end{cases}
$$

So for the example above,

Then $\log _{v} z(D)=\operatorname{tr}\left[\left(I-\left(l^{x}-1\right) A\right)^{-1}-I\right]$ Where x^{n} is interpreted as the n-where.

$$
\left(\left(\frac{1}{I-x_{A}}\right)_{11}=\frac{\operatorname{det}(I-x A)_{r s t}}{\operatorname{dut}(I-x A)} \cdots\right)
$$

$$
x\left(e^{-x}-1\right)
$$

\downarrow

$$
\begin{aligned}
& \sum \frac{e^{n x}-1}{n x}(x y)^{n}=\sum \frac{e^{n x}-1}{n} y^{n} x^{n-1} \\
& =
\end{aligned}
$$

