These are virtual knots modulo just one of the naive relations:

\[\begin{array}{c}
\begin{array}{c}
\times \\
\end{array}
\end{array} \neq \begin{array}{c}
\begin{array}{c}
\times \\
\end{array}
\end{array} \] but \[\begin{array}{c}
\begin{array}{c}
\times \\
\end{array} = \begin{array}{c}
\begin{array}{c}
\times \\
\end{array}
\end{array} \] \]

In \(\mathbb{A}^1 \), this becomes \[\begin{array}{c}
\begin{array}{c}
\times \\
\end{array}
\end{array} = 0 \begin{array}{c}
\begin{array}{c}
\times \\
\end{array}
\end{array} \] (call the quotient \(\mathbb{A}^1/\mathbb{C} \)).

It is also (expectedly) invisible to the cup fundamental group.

It also reads "Co-commutative Lie bialgebras."

Given all this, perhaps I should forget all about automorphisms of free groups?

Only \[\begin{array}{c}
\begin{array}{c}
\times \\
\end{array}
\end{array} \] is present, and its back legs commute along a skeleton line.

Also, \[\begin{array}{c}
\begin{array}{c}
\times \\
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\times \\
\end{array}
\end{array} + \begin{array}{c}
\begin{array}{c}
\times \\
\end{array}
\end{array} \] \]

\(0 \) if \(A \neq B \) belong to the same component.

\[\text{F: } x+y \to \log e^y \text{ in } \mathbb{A} \text{ :} \]

\[\begin{array}{c}
\begin{array}{c}
F \downarrow \\
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{c}
F \downarrow \\
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\end{array}
\end{array} \]
Question: Do wheels as below vanish?