$$
a-b \cdot \pi=0 \quad \text { Vac kaishon, Nov } 2007 .
$$

Localizing a V.F. ξ actin on a manifold d M :

Where $d_{\xi}:=d+q_{\xi}$
Proof Find $\theta \in \operatorname{Mal}^{\prime}(M-M \xi)$ sit. $\Theta(\xi)=1$, and then (using Leibritz)

$$
d_{\xi}\left(\alpha^{1} \Theta \wedge\left(d_{\xi} \Theta \theta\right)^{-1}\right)=\alpha_{1}\left(\alpha_{\xi} \otimes\right) \wedge\left(d_{q} \otimes \theta\right)^{-1}=\alpha
$$

where $d_{p} \otimes=1+d\left(\nrightarrow 1 \text { and so } d_{p} \oplus\right)^{-1}$ makes sense, Finally, near a fixed point,

$$
\theta=\frac{\sum \frac{1}{j} r_{j}^{2} d \theta_{j}}{\sum r_{j}^{2}} \text { in cards }\left(r_{j}, \theta_{j}\right)_{j=1}^{n}
$$

