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Let k be an algebraically closed field and let I be an ideal in the polynomial ring k[x1,...,xn]. The Hilbert Nullstellensatz 
(see e.g. [E]) says that the ideal of polynomials in k[x1,...,xn] that vanish on the variety defined by the common zeros of 
all polynomials in I is the radical of I. 

Problem: Is there a similar statement for finite type invariants of links? Let I be an ideal in the algebra V of finite type 
invariants of links. Let Z be the set of links that are annihilated by all members of I, and let J be the ideal in V of all 
invariants that vanish on Z. Clearly, J always contains the radical of I. Are they always equal? 

Example: Let I be the ideal generated by linking numbers. In this case, Z is the set of algebraically split links. Is it true 
that every finite type invariant that vanishes on algebraically split links is a sum of multiples of linking numbers by 
arbitrary other finite type invariants of links? I believe it is true, and I believe it follows from the results of Appleboim
[A], but I'm afraid Appleboim's paper is incomplete and while I believe it I cannot vouch for its validity. 

Remark: One may also ask, "what is the Zariski closure of a given set of links?". I believe that in the light of the 
paragraphs above the meaning of this question should be clear. I know of at least one interesting example: In [N] Ng 
shows that the Zariski closure of the set of ribbon knots is the set of knots whose Arf invariant vanishes. 
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